REVISÃO — VESTIBULAR 2024 SEMANA 3

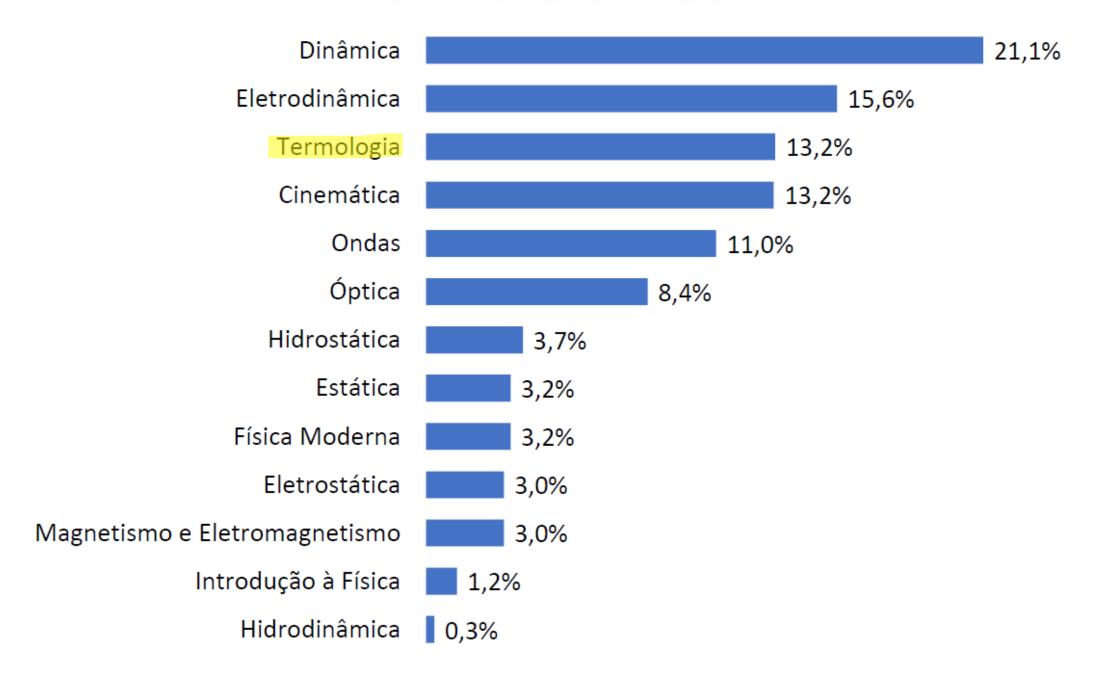
PROFESSOR DANILO

SOBRE A UNICAMP (é rápido)

• Revisamos tudo o que caiu

$$p \cdot V = n \cdot R \cdot T$$

$$V = \lambda \cdot f$$

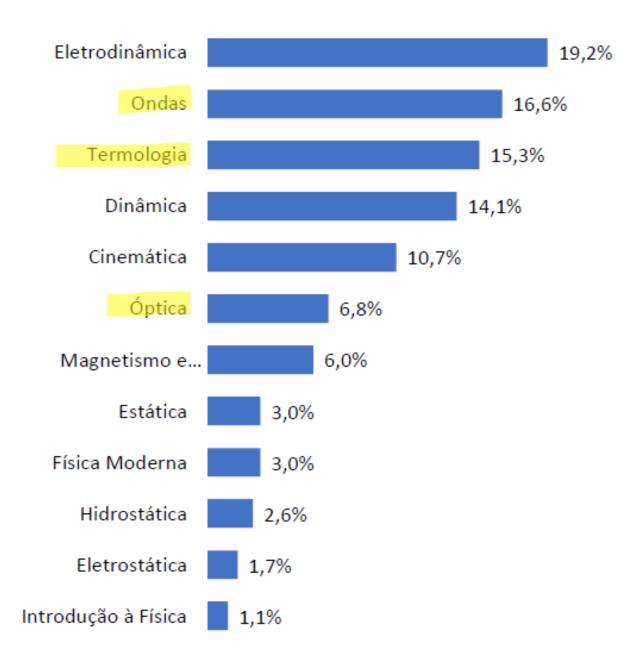

`	, <i>'</i>	
10 ⁻⁹	nano	n
10 ⁻⁶	micro	μ
10 ⁻³	mili	m
10 ⁻²	centi	С
10 ⁻¹	deci	d
10 ¹	deca	da
10 ²	hecto	h
10 ³	kilo	k
10 ⁶	mega	М
10 ⁹	giga	G
10 ¹²	tera	Т

FRENTE 3

- ÓTICA
- ONDAS
- TERMOLOGIA (CALORIMETRIA E TERMOMETRIA)
- TERMODINÂMICA E GASES IDEAIS

- Nessa segunda etapa, focaremos nos seguintes assuntos, nesta ordem:
- TERMOLOGIA
- ÓTICA
- ONDAS
- Faremos exercícios, preferencialmente, da UNESP e do ENEM

Física – TOTAL – 2016 a 2023



Física UNESP????

A implementação de duas fase é mais ou menos recente.

Deve seguir mais ou menos a mesma proporção.

Física ENEM (2015 - 2022)

PLANEJAMENTO PRIMEIRA FASE

- SEMANA 1
 - UNICAMP
- SEMANA 2
 - UNICAMP
- SEMANA 3
 - ENEM/UNESP
- SEMANA 4
 - ENEM/UNESP/FUVEST
- SEMANA 5
 - FUVEST

 Lembrando que a revisão é por assunto, portanto a sequência ao lado é no sentido de priorizar tais provas, apenas

CALORIMETRIA

Potência térmica (*P*):

$$P = \frac{Q}{\Delta t}$$

Calor Sensível

$$Q = m \cdot c \cdot \Delta T$$

$$Q = C \cdot \Delta T$$
 ou $C = m \cdot c$

Calor Latente

$$Q = m \cdot L$$

Q: calor trocado pelo corpo

m: massa do corpo

c: calor específico sensível

 ΔT : variação de temperatura

C: capacidade térmica

L: calor latente

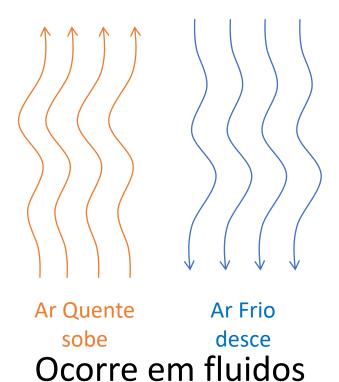
 Δt : tempo

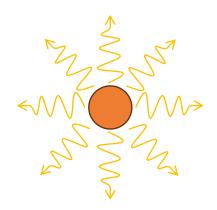
O que faltou na teoria? Sistema isolado:

ZQ = Q
TROCADO

EXERCÍCIOS SOBRE CALORIMETRIA

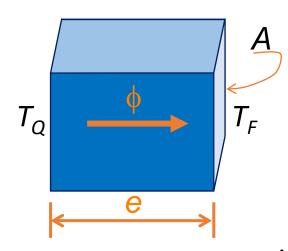
- UNESP
 - 2, 3, 4, 5, 6




- UNICAMP
 - 8, 11, 13, 14, 15
- FUVEST
 - 16, 18, 19, 20, 21
- ENEM
 - 22, 25, 26, 30, 31, 34

PROCESSOS DE TROCAS DE CALOR

Convecção


Radiação

Ocorre em meios materiais e também no vácuo

Condução

k: condutibilidade térmica

Lei de Fourier: $\phi = \frac{k \cdot A \cdot \Delta T}{e}$

Fluxo de calor (φ) é como uma potência térmica

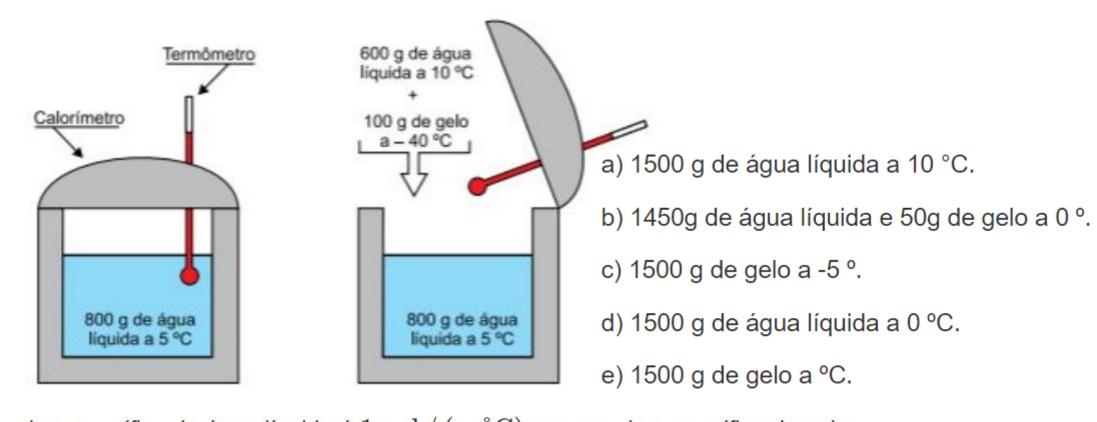
EXERCÍCIOS SOBRE TROCAS DE CALOR

- UNESP
 - 1
- UNICAMP
 - 7, 9, 10
- FUVEST
 - 17,
- ENEM
 - 24, 23, 28, 29, 32, 33

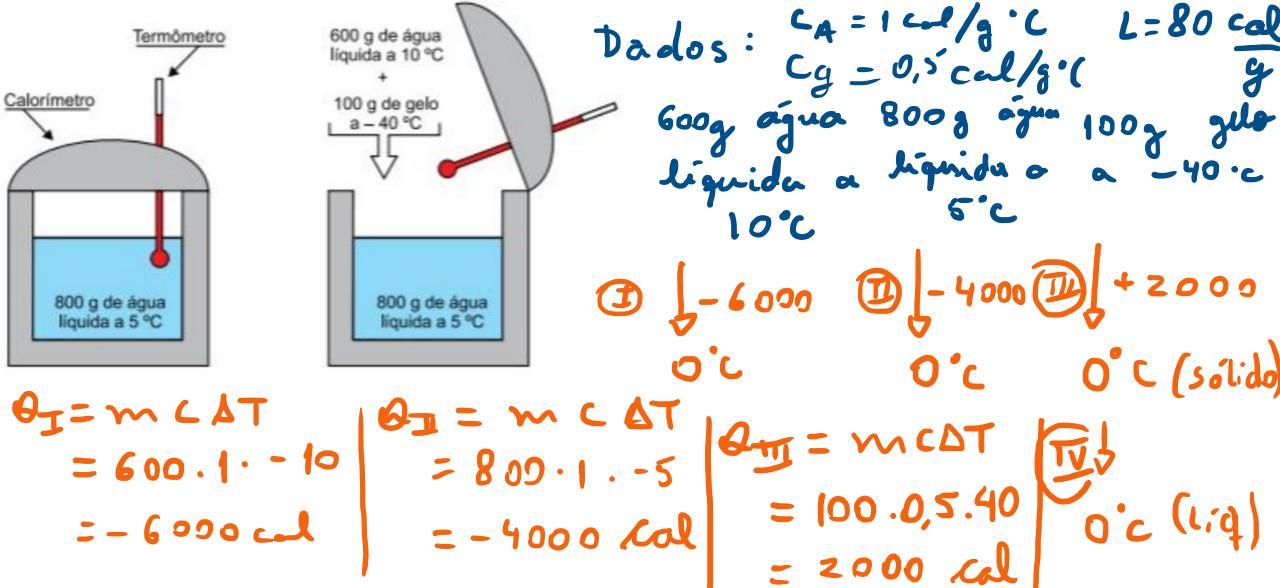
PLANEJAMENTO

PRIORITAZIOS

- 6
 - Sistema isolado
- 2
 - Meia-vida
- 24
 - Condução de calor
- 33
 - Fourier**
- 26
 - Potência elétrica

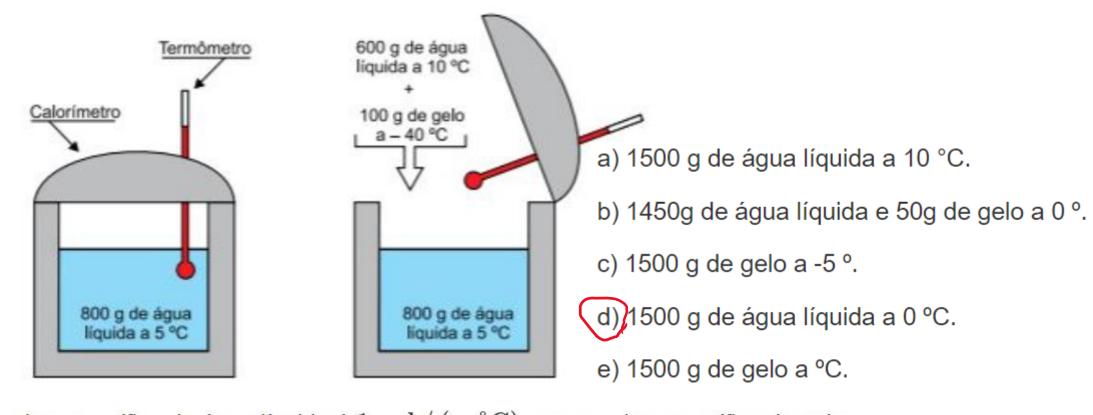

- 27
 - Dilatação*
- 29
 - Fourier
- 5
- Potência térmica

- * Talvez outro professor tenha feito
- ** Nível mais elevado

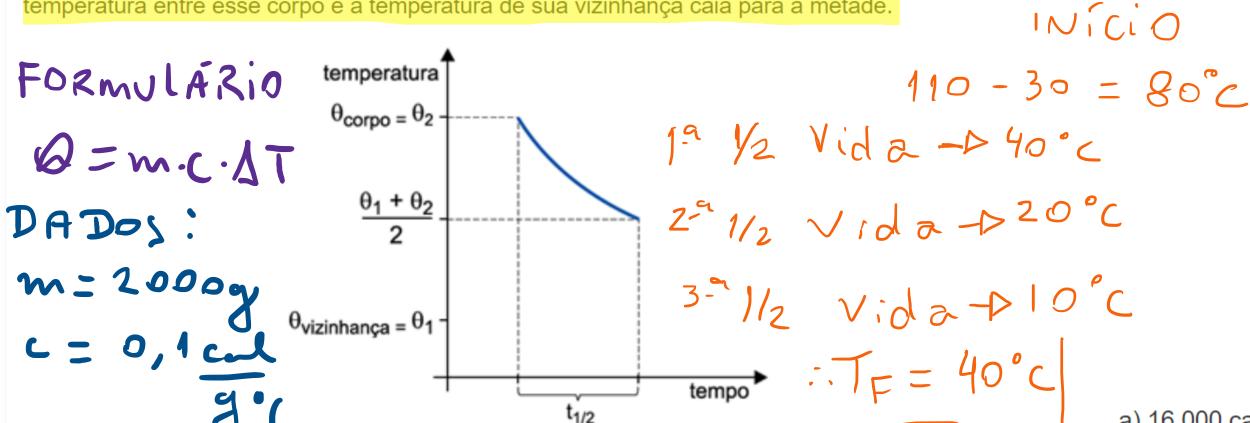


Em um experimento de calorimetria realizado no nível do mar, um estudante colocou 600g de água a 10° C e 100g de gelo a -40° C em um calorímetro ideal, onde já existiam 800g de água a 5° C, em equilíbrio térmico com o calorímetro.

Sabendo que o calor específico da água líquida é 1 cal / (g. °C), que o calor específico do gelo é 0,5 cal / (g. °C) e que o calor latente de fusão do gelo é 80 cal/g, depois de atingido o novo equilíbrio térmico havia, dentro do calorímetro,



Cg = 0,5 cal/g.(CA = 1 col/9 . C Dados: OI=mCAT L=80 1002 gllo 2 - 40.c = 600.1.-10 800g agua 600g agua الى ەدە 6 – ت Liquida o liquida a BJ = W C ST (D) +2000 1-6000 1-4000 = 800.1.-5 0°C (solido) = -4000 (TV) 8000 Qui = MCDT - 10000 cm = 100.0, 5.400°c (1.iq) = 2000 1 M = 1500 g الما 10000 حسال QTV = m = 100.80 = 8000 = l



Em um experimento de calorimetria realizado no nível do mar, um estudante colocou 600g de água a $10^{\circ}C$ e 100g de gelo a $-40^{\circ}C$ em um calorímetro ideal, onde já existiam 800g de água a $5^{\circ}C$, em equilíbrio térmico com o calorímetro.

Sabendo que o calor específico da água líquida é $1 \, \operatorname{cal} / (g.\,^{\circ}C)$, que o calor específico do gelo é $0, 5 \, \operatorname{cal} / (g.\,^{\circ}C)$ e que o calor latente de fusão do gelo é 80 cal/g, depois de atingido o novo equilíbrio térmico havia, dentro do calorímetro,

Define-se meia-vida térmica de um corpo (t_{1/2}) como o tempo necessário para que a diferença de temperatura entre esse corpo e a temperatura de sua vizinhança caia para a metade.

Considere que uma panela de ferro de 2 kg, inicialmente a 110 °C, seja colocada para esfriar em um local em que a temperatura ambiente é constante e de 30 °C. Sabendo que o calor específico do ferro é 0,1 cal/(g·°C), a quantidade de calor cedida pela panela para o ambiente no intervalo de tempo de três meias-vidas térmicas da panela é

- a) 16 000 cal.
- b) 14 000 cal.
- c) 6 000 cal.
- d) 12 000 cal.
- e) 8 000 cal.

3.0

$$3 \pm 1/2$$

inicio

 $110 - 30 = 80^{\circ}C$
 $9 \frac{1}{2} \text{ Vida} - 20^{\circ}C$
 $2^{-1}\frac{1}{2} \text{ Vida} - 20^{\circ}C$
 $3^{-1}\frac{1}{2} \text{ Vida} - 20^{\circ}C$

- 19 1/2 Vida > 40°C 2°1/2 V/da-120°C 3-1/2 Vida-P10°C
- ∴ AT = 40 110 2°0 f-=

:.TF = 40°C

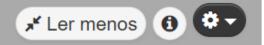
 $\omega = m c \Delta T$ = 2000.0,1 (-70) =-14000 xal

- a) 16 000 cal. (b))14 000 cal. c) 6 000 cal. d) 12 000 cal.
- e) 8 000 cal.

Num experimento, um professor deixa duas bandejas de mesma massa, uma de plástico e outra de alumínio, sobre a mesa do laboratório. Após algumas horas, ele pede aos alunos que avaliem a temperatura das duas bandejas, usando para isso o tato. Seus alunos afirmam, categoricamente, que a bandeja de alumínio encontra-se numa temperatura mais baixa. Intrigado, ele propõe uma segunda atividade, em que coloca um cubo de gelo sobre cada uma das bandejas, que estão em equilíbrio térmico com o ambiente, e os questiona em qual delas a taxa de derretimento do gelo será maior.

O aluno que responder corretamente ao questionamento do professor dirá que o derretimento ocorrerá

- (a) mais rapidamente na bandeja de alumínio, pois ela tem uma maior condutividade térmica que a de plástico.
- b) mais rapidamente na bandeja de plástico, pois ela tem inicialmente uma temperatura mais alta que a de alumínio.
- c) mais rapidamente na bandeja de plástico, pois ela tem uma maior capacidade térmica que a de alumínio.
- d) mais rapidamente na bandeja de alumínio, pois ela tem um calor específico menor que a de plástico.
- e) com a mesma rapidez nas duas bandejas, pois apresentarão a mesma variação de temperatura.

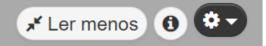

Na montagem de uma cozinha para um restaurante, a escolha do material correto para as panelas é importante, pois a panela que conduz mais calor é capaz de cozinhar os alimentos mais rapidamente e, com isso, há economia de gás. A taxa de condução do calor depende da condutividade k do material, de sua área A, da diferença de temperatura ΔT e da espessura d do material, sendo dada pela relação $\frac{\Delta Q}{\Delta t} = k \, A \, \frac{\Delta T}{d}$. Em panelas com dois materiais, a taxa de condução é dada por $\frac{\Delta Q}{\Delta t} = A \, \frac{\Delta T}{\frac{d_1}{k_1} + \frac{d_2}{k_2}}$ em que d_1 , e d_2 são as espessuras dos dois materiais, e

 k_1 e k_2 são as condutividades de cada material. Os materiais mais comuns no mercado para panelas são o alumínio $\left(k=20\frac{\mathrm{W}}{\mathrm{m\cdot K}}\right)$, o ferro $\left(k=8\frac{\mathrm{W}}{\mathrm{m\cdot K}}\right)$ e o aço $\left(k=5\frac{\mathrm{W}}{\mathrm{m\cdot K}}\right)$ combinado com o cobre $\left(k=40\frac{\mathrm{W}}{\mathrm{m\cdot K}}\right)$ (k = 40 W/m K).

Compara-se uma panela de ferro, uma de alumínio e uma composta de $\frac{1}{2}$ da espessura em cobre

 $\frac{1}{2}$ da espessura em aço, todas com a mesma espessura total e com a mesma área de fundo. a cobre-aço, alumínio e ferro.

- b) alumínio, cobre-aço e ferro.
- c) cobre-aço, ferro e alumínio.
- d) alumínio, ferro e cobre-aço.
- e) ferro, alumínio e cobre-aço.



Na montagem de uma cozinha para um restaurante, a escolha do material correto para as panelas é importante, pois a panela que conduz mais calor é capaz de cozinhar os alimentos mais rapidamente e, com isso, há economia de gás. A taxa de condução do calor depende da condutividade k do material, de sua área A, da diferença de temperatura ΔT e da espessura d do material, sendo dada pela relação $\frac{\Delta Q}{\Delta t} = k \, A \, \frac{\Delta T}{d}$. Em panelas com dois materiais, a taxa de condução é dada por $\frac{\Delta Q}{\Delta t} = A \, \frac{\Delta T}{\frac{d_1}{k_1} + \frac{d_2}{k_2}}$ em que d_1 , e d_2 são as espessuras dos dois materiais, e

 k_1 e k_2 são as condutividades de cada material. Os materiais mais comuns no mercado para panelas são o alumínio $\left(k=20\frac{\mathrm{W}}{\mathrm{m\cdot K}}\right)$, o ferro $\left(k=8\frac{\mathrm{W}}{\mathrm{m\cdot K}}\right)$ e o aço $\left(k=5\frac{\mathrm{W}}{\mathrm{m\cdot K}}\right)$ combinado com o cobre $\left(k=40\frac{\mathrm{W}}{\mathrm{m\cdot K}}\right)$ (k = 40 W/m K).

Compara-se uma panela de ferro, uma de alumínio e uma composta de $\frac{1}{2}$ da espessura em cobre e $\frac{1}{2}$ da espessura em aço, todas com a mesma espessura total e com a mesma área de fundo.

ALUMINID:
$$\phi_{AL} = \frac{\Delta \Theta}{\Delta t} = 20 \text{ AST}$$

Na montagem de uma cozinha para um restaurante, a escolha do material correto para as panelas é importante, pois a panela que conduz mais calor é capaz de cozinhar os alimentos mais rapidamente e, com isso, há economia de gás. A taxa de condução do calor depende da condutividade k do material, de sua área A, da diferença de temperatura ΔT e da espessura d do material, sendo dada pela relação $\frac{\Delta Q}{\Delta t} = k \, A \, \frac{\Delta T}{d}$. Em panelas com dois materiais, a taxa de condução é dada por $\frac{\Delta Q}{\Delta t} = A \, \frac{\Delta T}{\frac{d_1}{k_1} + \frac{d_2}{k_2}}$ em que d_1 , e d_2 são as espessuras dos dois materiais, e

 k_1 e k_2 são as condutividades de cada material. Os materiais mais comuns no mercado para panelas são o alumínio $\left(k=20\frac{\mathrm{W}}{\mathrm{m\cdot K}}\right)$, o ferro $\left(k=8\frac{\mathrm{W}}{\mathrm{m\cdot K}}\right)$ e o aço $\left(k=5\frac{\mathrm{W}}{\mathrm{m\cdot K}}\right)$ combinado com o cobre $\left(k=40\frac{\mathrm{W}}{\mathrm{m\cdot K}}\right)$ (k = 40 W/m K).

Compara-se uma panela de ferro, uma de alumínio e uma composta de $\frac{1}{2}$ da espessura em cobre e $\frac{1}{2}$ da espessura em aço, todas com a mesma espessura total e com a mesma área de fundo.

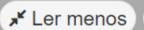
Na montagem de uma cozinha para um restaurante, a escolha do material correto para as panelas é importante, pois a panela que conduz mais calor é capaz de cozinhar os alimentos mais rapidamente e, com isso, há economia de gás. A taxa de condução do calor depende da condutividade k do material, de sua área A, da diferença de temperatura ΔT e da espessura d do material, sendo dada pela relação $\frac{\Delta Q}{\Delta t} = k \ A \ \frac{\Delta T}{d}$. Em panelas com dois materiais, a taxa de condução é dada por $\frac{\Delta Q}{\Delta t} = A \ \frac{\Delta T}{\frac{d_1}{k_1} + \frac{d_2}{k_2}}$ em que d_1 , e d_2 são as espessuras dos dois materiais, e

 k_1 e k_2 são as condutividades de cada material. Os materiais mais comuns no mercado para panelas são o alumínio $\left(k=20\frac{\mathrm{W}}{\mathrm{m\cdot K}}\right)$, o ferro $\left(k=8\frac{\mathrm{W}}{\mathrm{m\cdot K}}\right)$ e o aço $\left(k=5\frac{\mathrm{W}}{\mathrm{m\cdot K}}\right)$ combinado com o cobre $\left(k=40\frac{\mathrm{W}}{\mathrm{m\cdot K}}\right)$ (k = 40 W/m K).

Compara-se uma panela de ferro, uma de alumínio e uma composta de $\frac{1}{2}$ da espessura em cobre e $\frac{1}{2}$ da espessura em aço, todas com a mesma espessura total e com a mesma área de fundo.

COBRE-AÇO:
$$\Phi_{CA} = \Delta \theta = \frac{A}{\Delta t} \Delta T$$

COBRE-AÇO:
$$\Phi_{CA} = \Delta \theta = \Delta \frac{\Delta}{\Delta t} = \frac{A}{d_1} + \frac{\Delta}{d_2}$$

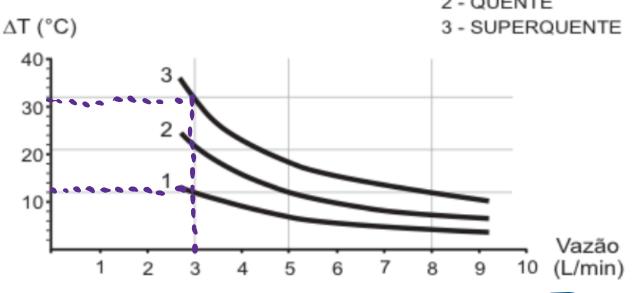

$$\Rightarrow \Phi_{CA} = \frac{A \cdot \Delta T}{d} \Rightarrow \Phi_{CA} = \frac{A \cdot \Delta T}{8d + 1d} \Rightarrow 0$$

$$\Phi_{cA} = 80 \underbrace{A.AT}_{qd} \Rightarrow$$

$$\Phi_{cA} = 80 \underline{A} \cdot \underline{A} \underline{T} \Rightarrow \Phi_{cA} = 8,9 \underline{A} \underline{A} \underline{T}$$

- a) cobre-aço, alumínio e ferro.
- b) alumínio, cobre-aço e ferro.
 - c) cobre-aço, ferro e alumínio.
 - d) alumínio, ferro e cobre-aço.
 - e) ferro, alumínio e cobre-aço.

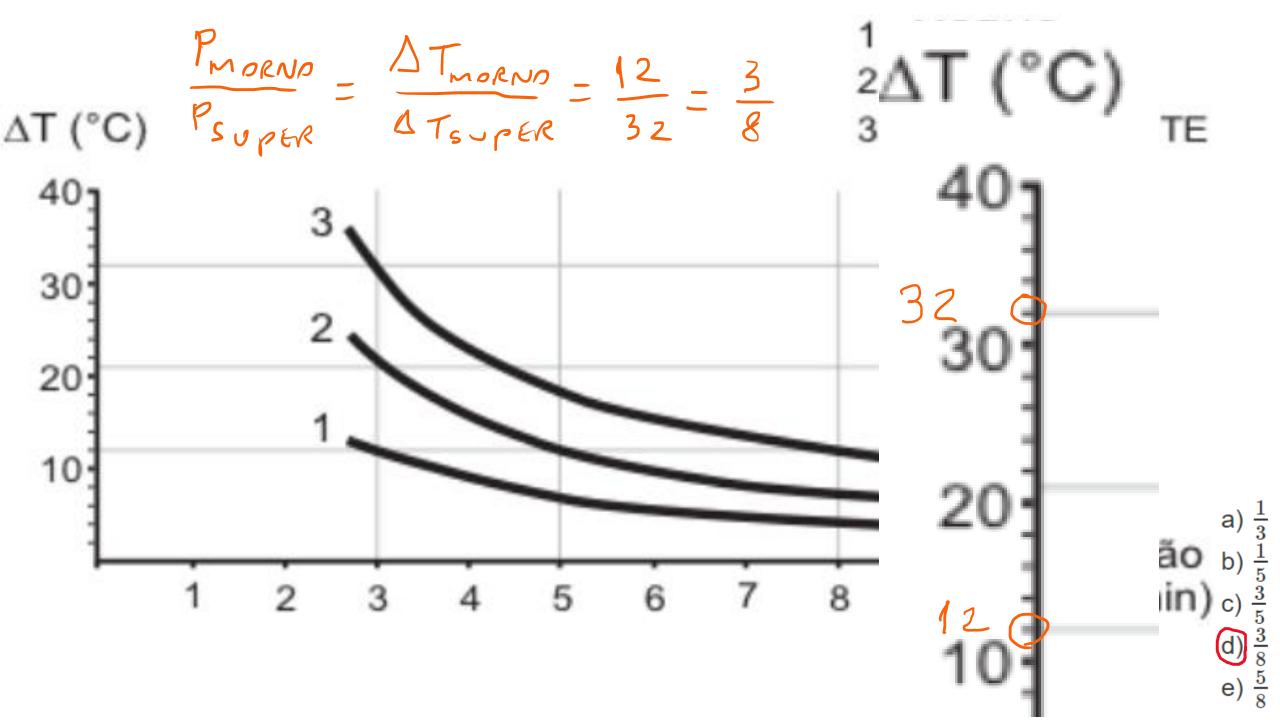
No manual fornecido pelo fabricante de uma ducha elétrica de 220 V é apresentado um gráfico com a variação da temperatura da água em função da vazão para três condições (morno, quente e superquente). Na condição superquente, a potência dissipada é de 6 500 W. Considere o calor específico da água igual a 4 200 J/(kg °C) e densidade da água igual a 1 kg/L.



Elevação de temperatura × Curva vazão

2 - QUENTE

Com base nas informações dadas, a potência na condição morno corresponde a que fração da potência na condição superquente?

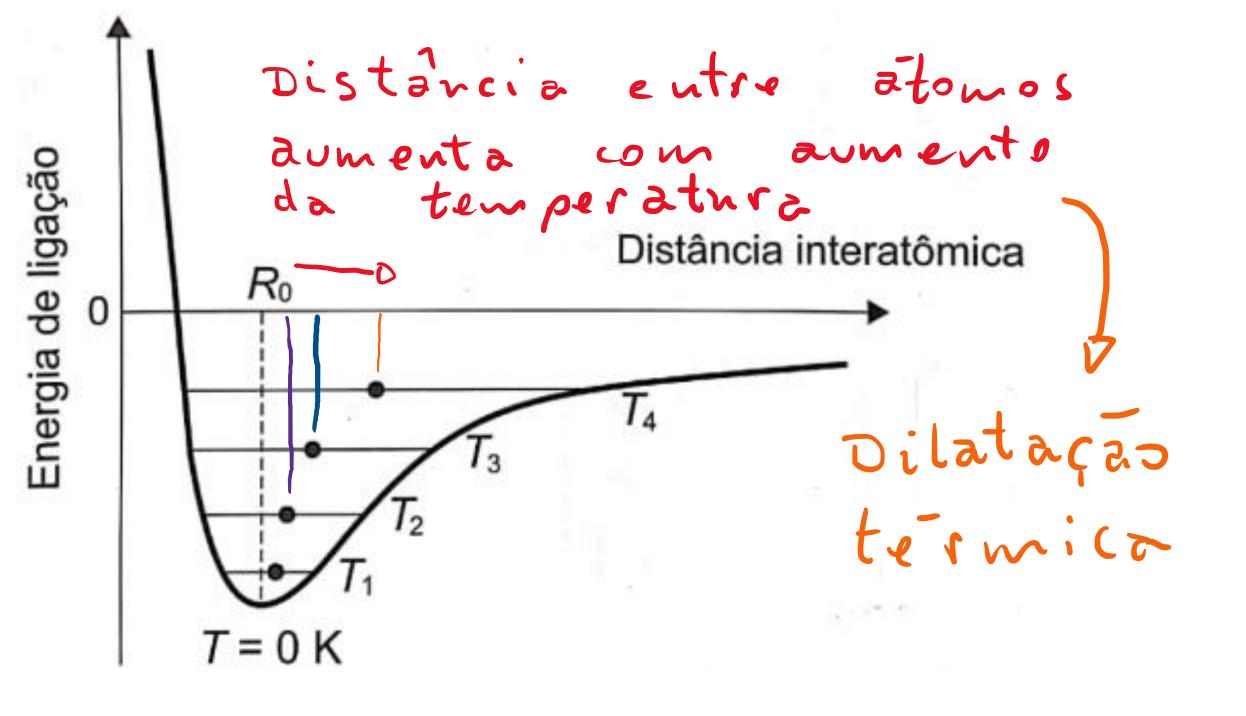

a)
$$\frac{1}{3}$$

b)
$$\frac{1}{5}$$

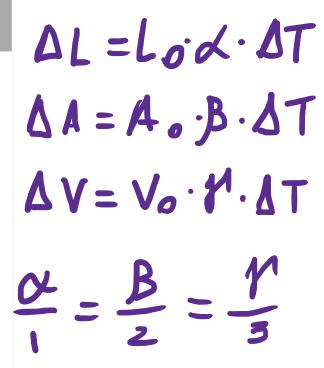
c)
$$\frac{3}{5}$$

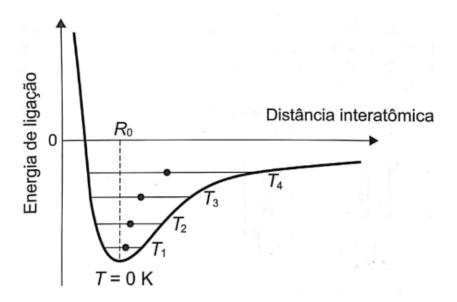
d)
$$\frac{3}{8}$$

e)
$$\frac{5}{8}$$



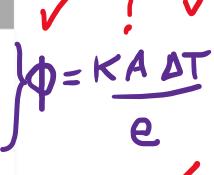
Alguns materiais sólidos são compostos por átomos que interagem entre si formando ligações que podem ser covalentes, iônicas ou metálicas. A figura apresenta a energia potencial de ligação em função da distância interatômica em um sólido cristalino. Analisando essa figura, observa-se que, na temperatura de zero kelvin, a distância de equilíbrio da ligação entre os átomos (R_0) corresponde ao valor mínimo de energia potencial. Acima dessa temperatura, a energia térmica fornecida aos átomos aumenta sua energia cinética e faz com que eles oscilem em torno de uma posição de equilíbrio média (círculos cheios), que é diferente para cada temperatura. A distância de ligação pode variar sobre toda a extensão das linhas horizontais, identificadas com o valor da temperatura, de T_1 a T_4 (temperaturas crescentes).




O deslocamento observado na distância média revela o fenômeno da

- a) ionização.
- b) dilatação.
- c) dissociação.
- d) quebra de ligações covalentes.
- e) formação de ligações metálicas.

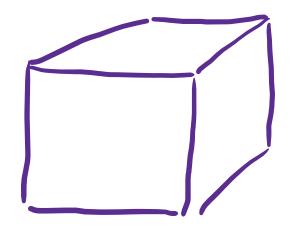
Alguns materiais sólidos são compostos por átomos que interagem entre si formando ligações que podem ser covalentes, iônicas ou metálicas. A figura apresenta a energia potencial de ligação em função da distância interatômica em um sólido cristalino. Analisando essa figura, observa-se que, na temperatura de zero kelvin, a distância de equilíbrio da ligação entre os átomos (R_0) corresponde ao valor mínimo de energia potencial. Acima dessa temperatura, a energia térmica fornecida aos átomos aumenta sua energia cinética e faz com que eles oscilem em torno de uma posição de equilíbrio média (círculos cheios), que é diferente para cada temperatura. A distância de ligação pode variar sobre toda a extensão das linhas horizontais, identificadas com o valor da temperatura, de T_1 a T_4 (temperaturas crescentes).


- a) ionização.
- b) dilatação.
- c) dissociação.
- d) quebra de ligações covalentes.
- e) formação de ligações metálicas.

O deslocamento observado na distância média revela o fenômeno da

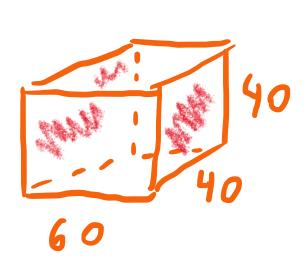
O objetivo de recipientes isolantes térmicos é minimizar as trocas de calor com o ambiente externo. Essa troca de calor é proporcional à condutividade térmica k e à área interna das faces do recipiente, bem como à diferença de temperatura entre o ambiente externo e o interior do recipiente, além de ser inversamente proporcional à espessura das faces.

A fim de avaliar a qualidade de dois recípientes A (40 cm x 40 cm x 40 cm) e B (60 cm x 40 cm x 40 cm) $\frac{\text{cm}}{\text{cm}}$, de faces de mesma espessura, uma estudante compara suas condutividades térmicas K_A e K_B. Para isso suspende, dentro de cada recipiente, blocos idênticos de gelo a 0 °C, de modo que suas superfícies estejam em contato apenas com o ar. Após um intervalo de tempo, ela abre os recipientes enquanto ambos ainda contêm um pouco de gelo e verifica que a massa de gelo que


se fundiu no recipiente B foi o dobro da que se fundiu no recipiente A.

A razão $\frac{k_A}{k_B}$ é mais próxima de

- a) 0,50.
- b) 0,67.
- c) 0,75.
- d) 1,33.
- e) 2,00.


$$Q_B = 20_A$$

 $A_A = 6 \times 40 \times 40$ $A_A = 9600 \text{ cm}^2$

B (60cm x 40cm x 40cm)

AB = 2×40×40 + 4×60×40 $A_{8} = 3200 + 9600$ AB = 12800 cm²

$$\Phi_{B} = 2 \Phi_{A}$$

$$\Phi = \frac{KA\Delta T}{e}$$

$$A_{A} = 9600 \text{ cm}^{2}$$

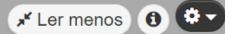
$$A_{B} = 12800 \text{ cm}^{2}$$

$$\Phi_{B} = 2 \Phi_{A} = 0$$

$$K_{B} A_{B} \Delta T_{B} = 2 K_{4} A_{A} \Delta T_{A}$$

$$E_{B} = 0$$

$$\frac{128}{2.96} = \frac{K_A}{K_B} = \sum_{K_B} \frac{k_A}{96} = \frac{2}{3} = \sum_{K_B} \frac{k_A}{5} = \frac{0.000}{0.000}$$

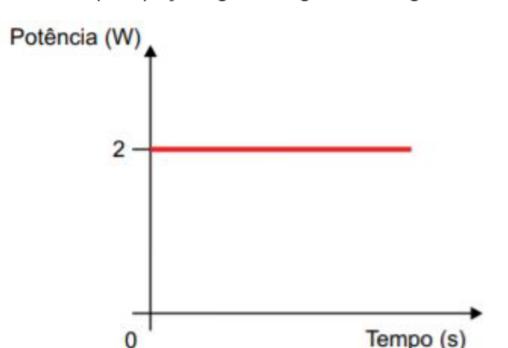

$$\approx 0,67$$

a) 0,50.

b) 0,67.

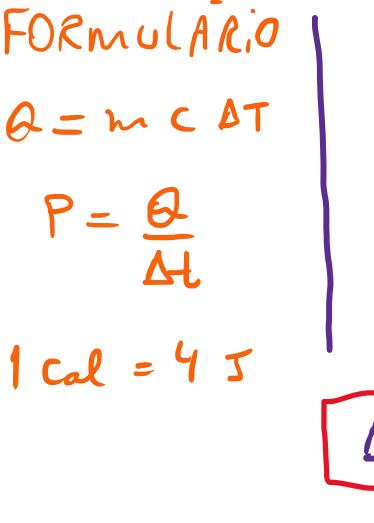
d) 1,33.

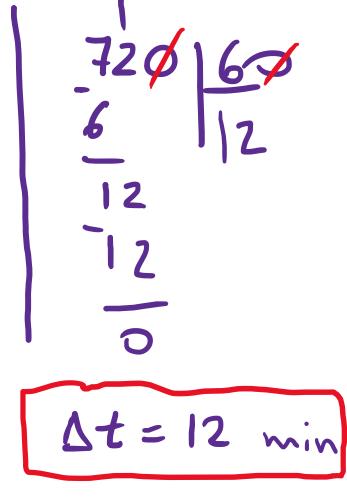
e) 2,00.



FORMULARIO

Determinada peça de platina de 200 g, sensível à temperatura, é mantida dentro de um recipiente protegido por um sistema automático de refrigeração que tem seu acionamento controlado por um sensor térmico. Toda vez que a temperatura da peça atinge 80 °C, um alarme sonoro soa e o sistema de refrigeração é acionado. Essa peça está dentro do recipiente em equilíbrio térmico com ele a 20 °C, quando, no instante t = 0, energia térmica começa a fluir para dentro do recipiente e é absorvida pela peça segundo o gráfico a seguir.



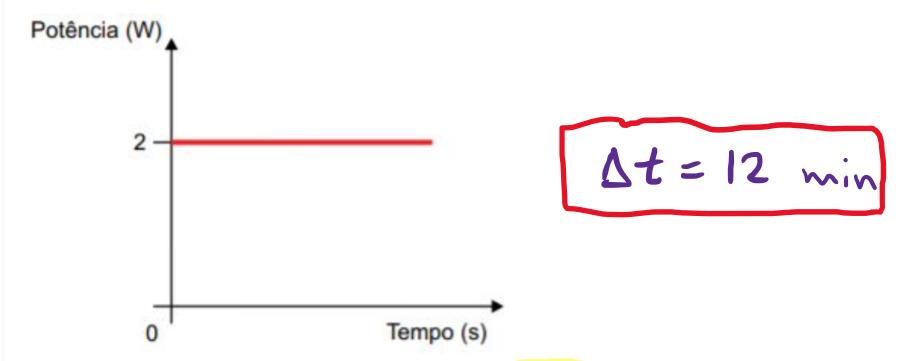

- a) t = 8 min.
- b) t = 6 min.
- Q= m c DT=D
- c) t = 10 min.
- Q = 200.0,03.(80-20)
- d) t = 3 min.
- Q = 6.60 =D
- e) t = 12 min.

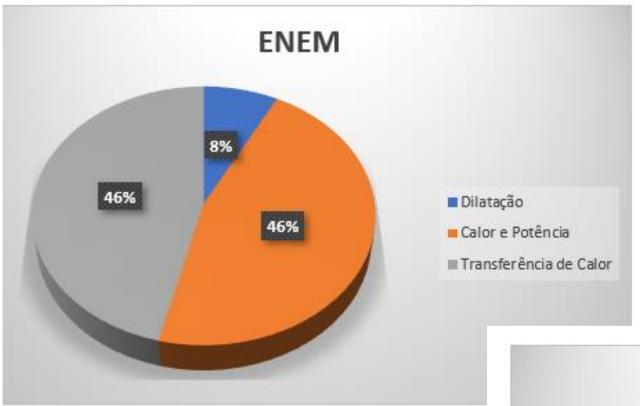
Sabendo que o calor específico da platina é $0,03 \text{ cal } / (\text{g} \cdot ^{\circ}\text{C})$ e adotando 1 cal = 4J, o alarme sonoro disparará, pela primeira vez, no instante

Resolução:

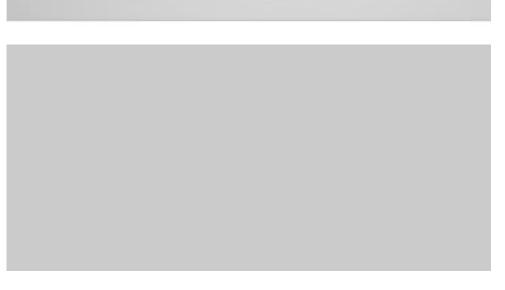
$$Q = m c \Delta T = D$$
 $Q = 200.0,03.(80-20)$
 $Q = 6.60 = D$
 $Q = 360 col$
 $Q = 1440 J$

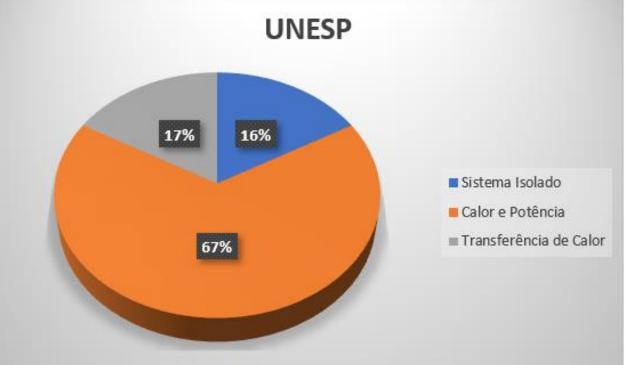
Por fim:


$$P = \frac{Q}{\Delta t} \Rightarrow 2 = 1440 \Rightarrow \Delta t = 7205$$



Determinada peça de platina de 200 g, sensível à temperatura, é mantida dentro de um recipiente protegido por um sistema automático de refrigeração que tem seu acionamento controlado por um sensor térmico. Toda vez que a temperatura da peça atinge 80 °C, um alarme sonoro soa e o sistema de refrigeração é acionado. Essa peça está dentro do recipiente em equilíbrio térmico com ele a 20 °C, quando, no instante t = 0, energia térmica começa a fluir para dentro do recipiente e é absorvida pela peça segundo o gráfico a seguir.




Sabendo que o calor específico da platina é $0,03 \text{ cal } / (g \cdot {}^{\circ}\text{C})$ e adotando 1 cal = 4J, o alarme sonoro disparará, pela primeira vez, no instante

- a) t = 8 min.
- b) t = 6 min.
- c) t = 10 min.
- d) t = 3 min.
- (e))t = 12 min

